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Abstract: 

 

This report presents the design, implementation, and evaluation of a 

multi-robot navigation system. The system integrates collaborative path 

planning, dynamic obstacle avoidance, and decentralized control. It 

utilizes Simultaneous Localization and Mapping (SLAM), Dijkstra’s 

algorithm for global path planning, and Model Predictive Control (MPC) 

for local trajectory generation. The system’s effectiveness is validated 

through both simulation and physical robot experiments. 
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Introduction 
Project Background and Objectives 
Multi-robot systems are becoming increasingly important in modern industrial and service applications, 

particularly in warehouse logistics, agricultural automation, disaster response, and security. Multi-robot 

path planning is a crucial technology to ensure these robots efficiently complete their tasks. The goal of 

path planning is to find an optimal path for each robot from its starting position to its destination while 

avoiding obstacles and other robots. Achieving this goal requires a combination of global path planning 

and local path planning methods to ensure efficient navigation in complex and dynamic environments 

(Lin et al., 2022). 

This project aims to design and implement a multi-robot path planning system using the Dijkstra 

algorithm for global path planning and the Dynamic Window Approach (DWA) for local path planning. 

Additionally, the initial design includes an exploration of the A* algorithm and the Artificial Potential 

Field (APF) method to investigate their performance and suitability for path planning tasks (Chen et al., 

2020; Zhao & Zhu, 2011; Du & Nan, 2016). 

Brief introduction to the Overall System Architecture 
This project aims to design and implement a multi-robot path planning system using the Dijkstra 

algorithm for global path planning and the Dynamic Window Approach (DWA) for local path planning. 

Additionally, the initial design includes an exploration of the A* algorithm and the Artificial Potential 

Field (APF) method to investigate their performance and suitability for path planning tasks (Madridano et 

al., 2021). 

The entire multi-robot path planning system consists of several key modules: 

1. Task Assignment Module: Responsible for assigning tasks to robots based on their current states 

and task priorities, ensuring that each robot can reasonably complete its assigned tasks. 

2. Path Planning Module: Comprises global and local path planning submodules. Global path 

planning uses the Dijkstra algorithm to determine the optimal path from the start position to the 

goal position, while local path planning uses the DWA algorithm to handle real-time obstacle 

avoidance, ensuring the robot's safe movement in a dynamic environment. 

3. SLAM (Simultaneous Localization and Mapping) Module: Utilizes Adaptive Monte Carlo 

Localization (AMCL) to create and update the environment map while accurately tracking each 

robot's position. 

Through the collaborative operation of these modules, the multi-robot system can efficiently complete 

path planning and task execution in complex environments. This project not only implements the above 

functional modules but also ensures the system's stability and reliability through detailed testing and 

validation, laying a solid foundation for the deployment of multi-robot systems in real-world applications. 
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Contract and System Architecture 
Requirements and Contract from Review 1 
Trajectory planning: Implement dynamic integration of global and local path planning in a multi-robot 

system, aiming to explore and optimize the optimal route in real time. 

⚫ F: PRM, Dijkstra/A* with no collision checking against other robot 

⚫ P: PRM, Dijkstra/A* with post-processing collision checking against other robot 

⚫ C: Any kind of planning that collision checks with other robot during the moving stage 

⚫ D: Plus, path smoothing to make it so that robots don’t have to stop and spot turn. 

⚫ HD: Integrate local path planning and global path planning to find the global optimal path and adjust 

the local optimal path in real time to complete complex tasks. 

System Architecture Details 
The system architecture consists of three main parts: task assignment, multi-robot path planning, and 

multi-robot SLAM. The architecture is designed to ensure efficient task allocation, path planning, and 

real-time environment mapping and updates. Figure 1 in the system architecture diagram illustrates the 

details and interactions of each module. 

 

 
Figure 1 

1. Task Assignment Module: 



 

UTS Faculty of Engineering and Information Technology   Assignment Cover Sheet 2016 

o Function: Delivers and retrieves items task queue for each warehouse robot based on 

location and task completion time. 

o Inputs: Time taken to finish tasks, robot IDs, location of items in the warehouse, robot 

task queue/priority. 

o Outputs: Robot IDs for task allocation, task details including start and end points. 

2. Path Planning Module: 

o Function: Takes robot IDs and locations of start and end points to output a path for each 

robot. Conducts replanning if a collision occurs according to the task queue. 

o Inputs: Robot IDs, locations of start and end points, task queue. 

o Outputs: Robot tasks and paths. 

3. SLAM (Simultaneous Localization and Mapping) Module: 

o Function: Maps the area of the warehouse and obstacles, outputs the position of each 

robot. 

o Inputs: Collision check, sensory data. 

o Outputs: Location of each robot, updated maps. 

4. Control Module: 

o Function: Ensures robots follow the planned paths and handles collision checks/obstacle 

avoidance. Provides sensory data for localization. 

o Inputs: Path information from the path planning module, sensory data. 

o Outputs: Control commands for robots, updated sensory data. 

System Integration: 

• The Task Assignment Module assigns tasks to robots and provides initial path details to the Path 

Planning Module. 

• The Path Planning Module calculates the optimal paths using global path planning (Dijkstra/A*) 

and adjusts the paths in real-time using local path planning methods (DWA/APF). 

• The SLAM Module continuously updates the environment map and robot positions, providing 

necessary data for path replanning. 

• The Control Module ensures the robots follow the planned paths and adjusts for any dynamic 

obstacles or changes in the environment. 

The integrated system allows for efficient multi-robot coordination and dynamic path planning, enabling 

robots to complete complex tasks in real-time while avoiding collisions and optimizing their routes. 
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Test Plans and Evidence of Completion 
In this section, we will detail the test plans and evidence of completion for each phase of the project. The 

test plans cover various aspects, from subsystem testing to system integration testing, ensuring the 

functionality, reliability, and performance of the system. The following are the specific test plans and 

results. 

Subsystem Test Plan 
First, we conducted tests on the path planning subsystem. These tests aimed to verify the effectiveness 

and safety of the path planning system in a multi-robot warehouse environment. 

Task State Evidence 

Test 1: Path Generation and Following 

• Requirement: Verify the system can generate 

optimal paths for each robot to reach 

designated destinations. 

• Test Procedure: In the simulation 

environment, assign a destination for each 

robot, have the system generate paths, and 

make the robots follow these paths. 

• Evaluation Criteria: All robots reach their 

destinations without collisions, following the 

optimal paths. 

• Additional Resources: High-precision 

warehouse map from SLAM. 

• Input: map, robot and target position 

• Output: path without collisions with 

obstacles 

• Software: Rviz in ROS or Python 

• Language: Python 

• Algorithm: A* 
 

Pass 

 

 
Photo: These two photos show the 

paths generated by two robots using 

A* in the laboratory map and the 

maze map, respectively. 

Video recording: Please watch 

“Astra. mp4” 

Explanation: The photos show the 

A* algorithm's path generation 

process for robots in different 

environments. The top image is the 

laboratory map, and the bottom is 

the maze map. Both images 

visualize the A* algorithm's 

process , meeting the test criteria. 
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Test 2: Dynamic Obstacle Avoidance 

• Requirement: Verify the system can replan 

paths when encountering unexpected 

obstacles. 

• Test Procedure: Introduce obstacles 

randomly on the path of a robot during task 

execution and observe the system's response. 

• Evaluation Criteria: Robots can replan their 

paths to avoid them and continue their tasks. 

• Additional Resources: Dynamic obstacle 

simulator. 

• Input: map, robot and target position, 

dynamic model 

• Output: path without collisions with 

obstacles and dynamic model, simulation that 

the robot can go through the map has the 

dynamic model 

• Software: Rviz in ROS or Python 

• Language: Python 

• Algorithm: APF 

 

Pass 

 
Photo: These two photos show three 

robots performing path planning in a 

laboratory map and another map, 

respectively. 

Video recording: Please watch 

“multi_robot_navi. mp4” and 

“multi_navigation. mp4” 

Explanation: The photos illustrate 
the global and local path planning 
processes for three robots as part 
of the dynamic obstacle avoidance 
test. The top image shows the 
robots navigating in a laboratory 
map, while the bottom image 
shows them navigating in another 
map. Both images visualize how 
the robots adapt their paths in 
response to dynamic obstacles, 
demonstrating the effectiveness of 
the algorithm used in the test. 
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Test 3: Multi-Robot Coordination 

• Requirement: Verify the system can 

coordinate actions among multiple robots to 

avoid collisions and optimize overall path 

efficiency. 

• Test Procedure: Deploy multiple robots in 

the simulation environment to perform 

different tasks simultaneously, observing 

the coordination mechanism between 

robots. 

• Evaluation Criteria: Robots can coordinate 

with each other to avoid collisions while 

executing tasks and optimize overall path 

efficiency as much as possible. 

• Additional Resources: Command from 

Multi-task allocation 

• Input: map, command (robots and targets 

position) 

• Output: path without collisions with 

obstacles and each robot, a simulation that 

the robot can go through the map has the 

dynamic model and multi-robot 

• Software: Rviz in ROS or Python 

• Language: Python 

• Algorithm: APF/DWA 

 

Pass 

 
Photo: These two photos show three 

robots performing path planning in a 

laboratory map and another map, 

respectively. 

Video recording: Please watch 

“multi_robot_navi. mp4”, 

“multi_navigation. mp4” and “Multi-

robot_dynamic_obstacl_avoidance.MOV” 

Explanation: The photos illustrate the 
global and local path planning 
processes for three robots as part of 
the multi-robot coordination test. The 
top image shows the robots navigating 
in a laboratory map, while the bottom 
image shows them navigating in 
another map. Both images visualize 
how the robots coordinate their paths 
to avoid collisions and optimize overall 
path efficiency, demonstrating the 
effectiveness of the algorithm used in 
this test. 

Table 1 
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System Integration Test Plan 
The system integration tests included several critical steps to verify the coordination and performance of 

the path planning, SLAM, and task allocation subsystems within the multi-robot system. 

 

Task State Evidence 
Test 1: TurtleBot Integration Test Control  

Requirement:  

The test aims to ensure that the TurtleBot can 

accurately follow movement commands and that the 

control algorithm package is effective in real-world 

scenarios. This involves two primary aspects: the 

TurtleBot's ability to move as commanded and the 

control algorithm's ability to accurately guide the 

TurtleBot along a planned path, including 

navigating around obstacles.  

Test Procedure:   

⚫ Movement Capability Test:  

◼ Send movement commands to the 

TurtleBot via the control repository, 

including forward, backward, and 

turning motions.  

◼ Monitor the TurtleBot's response to these 

commands and its execution of the 

corresponding movements.  

⚫ Control Algorithm Package Validation:  

◼ Utilize functions within the control 

algorithm package to generate path 

planning and movement instructions.  

◼ Apply these instructions to test if the 

TurtleBot can move accurately along the 

path planned by the algorithm package.  

◼ Observe the TurtleBot's response to 

environmental factors, such as obstacle 

avoidance and path adjustment 

behaviors, to assess the practical 

effectiveness of the control algorithm.  

Evaluation Criteria:   

Movement Response: The TurtleBot should 

execute movements accurately and precisely 

according to the issued commands.  

Effectiveness of the Control Algorithm: The 

TurtleBot should be able to navigate according to 

the path planned by the control algorithm package, 

demonstrating path planning and obstacle avoidance 

capabilities.  

 

Pass 

 

 
 
Photo: The photo above shows control 

TurtleBot movement 

Video recording: Please watch “Control 

TurtleBot movement. mp4” 

Explanation: We have successfully connected 

the TurtleBot3 and are able to use the control 

package to ensure that the TurtleBot3 can 

move along the trajectory. The control 

principle is Dynamixel control, which 

communicates and controls the TurtleBot3 

through the 'cmd_vel' topic. 
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Test 2: Test SLAM and path planning  

 

Requirement:  

The test focuses on verifying the system's ability to 

generate a map using SLAM and then utilize this 

map for path planning. The path planner should be 

able to take the generated map and use it to formulate 

a path from a specified start position to a target 

position.  

 

Test Procedure:   

⚫ SLAM Simulation:  

◼ Initiate the SLAM process to explore the 

environment and generate a detailed map. 

This may involve the robot moving 

through a test area or a simulated 

environment, depending on the testing 

setup.  

◼ Ensure the map includes all necessary 

details for path planning, such as 

obstacles, open spaces, and potentially 

hazardous areas.  

⚫ Path Planning Implementation:  

◼ Input the start and target positions into the 

path planning algorithm.  

◼ Use the map generated from the SLAM 

process as the basis for path planning.  

◼ Execute the path planning algorithm to 

calculate a viable path from the start to the 

target position, considering obstacles and 

optimal routing. 

  

 

Evaluation Criteria:   

Map Reception: The system should successfully 

receive and process the map generated from the 

SLAM procedure.  

Path Generation: A path should be successfully 

generated based on the SLAM-derived map and the 

specified start and target positions. The generated 

path should be practical, safe, and efficient, 

demonstrating the effectiveness of the path planning 

algorithm. 

Pass 

 
 

Photo: The photo above shows navigate and 

generate SLAM maps 

Video recording: Please watch “SLAM 

mapping. mp4” 

Explanation: We found two ways for 

subsystems to communicate with each other. 

The first is for the path planning to obtain the 

dynamic map of SLAM by subscribing to the 

'/map' topic, which is published by gmapping. 

The second method is for SLAM to save the 

static map to a designated folder, then read and 

publish it to the '/map ' topic via map_server, 

which is then subscribed to by the path 

planning. 
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Test 3: Test Task Allocation and Path Planning 

Integration  

 

Requirement:  

The goal of this test is to ensure that the task 

allocation system can communicate with and 

exchange data with the path planning system. This 

interaction should be capable of generating 

information about the distance matrix and task 

allocation lists for each TurtleBot. Specific 

requirements include:  

Communication between Task Allocation and 

Path Planning: The task allocation system must be 

able to send a list of tasks to the path planning system 

and be capable of receiving feedback from the path 

planning system.  

Generation of Distance Matrix and Task Lists: 

Upon receiving the task list, the path planning system 

generates a corresponding distance matrix and feeds 

this information back to the task allocation system. 

The task allocation system then updates the task list 

for each TurtleBot based on the distance matrix.  

 

Test Procedure:   

⚫ Distance Matrix Generation and Sharing:  

◼ The path planning system initiates the 

process by generating a distance matrix 

between the tartgets and each robot.  

◼ This distance matrix is then shared with 

the task allocation system as the 

foundation for task allocation.  

⚫ Task Allocation and Task List Creation:  

◼ Upon receiving the distance matrix, the 

task allocation system uses it to allocate 

tasks among the available TurtleBots, 

considering factors such as proximity and 

task urgency.  

◼ A detailed task list for each TurtleBot is 

created and sent back to the path planning 

system.  

⚫ Path Planning for Each TurtleBot:  

◼ With the updated task lists, the path 

planning system calculates and generates 

optimal path plans for each TurtleBot, 

ensuring each robot efficiently completes 

its assigned tasks.  

 

Evaluation Criteria: Success is measured by the 

path planning system's ability to receive the task list 

and generate efficient path plans for each TurtleBot, 

allowing for the completion of tasks in an optimized 

manner. 

Pass 

 

 
Photo: The interface highlights different 

TurtleBots, each assigned specific tasks and 

routes 

Video recording: Please watch 

“multi_targets_navigation.mp4” and 

“navigation_task_list.mp4” 

Explanation: The video 
"multi_targets_navigation.mp4" shows the 
process where multiple robots, upon 
receiving their task lists from the task 
allocation system, simultaneously execute 
multi-target navigation tasks and complete 
them. The video provides a detailed 
demonstration of how each TurtleBot 
dynamically receives task lists and executes 
assigned tasks based on the distance matrix 
and task urgency. Each robot, following the 
instructions from the task allocation system 
and supported by the path planning system, 
calculates the optimal path and performs the 
navigation tasks. 
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Integration Test 4: Full Simulation Test  

 

Requirement:  

The objective of this test is to conduct a full 

simulation involving one iteration of the task list, 

where task allocation, path planning, and SLAM are 

integrated to produce an output for a set task list. The 

robots must successfully move to the correct 

locations assigned to them. This requires:  

Integration of SLAM, Task Allocation, and Path 

Planning: All subsystems must work together 

seamlessly to utilize the map generated by SLAM for 

task allocation and path planning.  

Successful Navigation to Assigned Locations: Each 

robot must accurately navigate to its designated 

locations as per the task list, demonstrating the 

effectiveness of the integrated system.  

 

Test Procedure:  

SLAM Map Generation: Begin the simulation with 

SLAM to create a detailed map of the environment. 

This map is essential for accurate task allocation and 

path planning.  

Task Allocation: Based on the generated map and 

the given task list, allocate tasks to each robot, 

ensuring the tasks are feasible within the mapped 

environment.  

Path Planning: Generate path plans for each robot 

based on the task allocations. These plans should 

take into consideration the layout of the environment 

as defined by the SLAM map to ensure efficient and 

obstacle-free navigation.  

Execute Movements: The path plans are sent to the 

robots. Each robot follows its path plan to move to 

the correct locations assigned to it.  

 

Evaluation Criterion: The criterion for a 

successful test is that each TurtleBot moves to all 

locations specified on the task list successfully.  

Pass 

 

 
Photo: Include an image that visually 
represents the integration of the SLAM, task 
allocation, and path planning processes. 
 

Explanation: During this integration test, 
the subsystems for SLAM, task allocation, 
and path planning must work cohesively. 
The generated map from SLAM provides the 
necessary spatial information for task 
allocation. Each robot's path planning 
module uses this map to generate viable 
paths, ensuring each robot can navigate to 
its designated locations efficiently. The test 
validates the system's capability to perform 
complex tasks in a coordinated manner, 
simulating real-world scenarios where 
multiple robots need to operate 
simultaneously in a shared environment. 
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Test 5: Computational Load Test (Optional)  

 

Requirement:  

This test is designed to assess the laptop's capability 

to handle the computational demands of a 

comprehensive warehouse simulation integrating 

multiple subsystems. These include running various 

algorithms and simulations simultaneously, which 

are essential for the operation of a dynamic 

warehouse environment. The laptop used must be 

able to continuously run the entire simulation setup 

without crashing or experiencing significant 

performance degradation. Key requirements include:  

System Stability: The laptop must maintain 

operational stability throughout the test, without any 

system crashes or freezes.  

Performance Maintenance: The laptop should not 

suffer from significant performance issues that could 

impede the running of simulations or algorithms. 

This includes managing thermal loads to prevent 

throttling and ensuring sufficient memory and 

processing resources are available.  

 

Test Procedure:  

Setup and Initialization: Configure the laptop with 

the necessary software and simulations that represent 

the integrated warehouse system. This setup should 

include all subsystems and the corresponding 

algorithms they run.  

Simultaneous Operation: Start all subsystems 

simultaneously on the laptop. This operation should 

mimic the computational load expected during the 

peak operation of the warehouse simulation.  

Monitoring: Throughout the test, monitor the 

laptop's performance metrics, including CPU and 

GPU usage, memory utilization, and thermal 

statistics. Use appropriate tools to log these metrics 

for later analysis.  

 

Evaluation Criterion: The laptop must complete 

the test without crashing, experiencing system 

freezes, or significant performance throttling. 

Successfully running the simulation without 

interruption and maintaining responsive system 

behavior throughout the test period are key 

indicators of passing this test. 

No 
pass 

Explanation: After our evaluation, it is 

temporarily impossible to run all the systems 

on a single laptop because our virtual machine 

may crash. Although it is possible to 

communicate using a server on different 

laptops within the same local area network, we 

no longer have time for this. Therefore, we can 

only give up this optional test. 

Table 2 

Other Contributions 
Throughout the project, I also contributed significantly in other areas, including: 

1. TurtleBot Integration Test Control: 

• Objective: To verify the TurtleBot's movement capabilities and the effectiveness of the control 

algorithm package in real-world scenarios. 

• Activities: 

o Sent movement commands to the TurtleBot and monitored its response. 

o Utilized functions within the control algorithm package to generate path planning and 

movement instructions. 
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o Ensured the TurtleBot accurately followed the planned paths and demonstrated effective 

obstacle avoidance. 

• Outcome: Successfully connected and controlled TurtleBot3, ensuring it could move along the 

trajectory as planned. This included using Dynamixel control via the 'cmd_vel' topic for 

communication and control. 

• Evidence: 

o Photo: Image showing TurtleBot3 successfully navigating a path. 

o Video: " Control_Pathplanning.mp4" demonstrating the TurtleBot following the planned 

path. 

o Description: Successfully executed commands and observed the TurtleBot navigating the 

planned path, avoiding obstacles, and responding accurately to control inputs. 

 

 

2. Team Communication and Collaboration: 

• Objective: To foster effective communication and collaboration within the project team, ensuring 

smooth project progress and integration. 

• Activities: 

o Actively participated in team meetings and discussions. 

o Assisted team members with technical issues and provided support for subsystem 

integration. 

o Coordinated efforts to ensure all team members were aligned with project goals and 

timelines. 
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• Outcome: Maintained a high level of teamwork and mutual support, contributing to the overall 

efficiency and success of the project. 

 

3. Multi-Robot Connection: 

• Objective: To establish and verify the connection and communication between multiple robots 

within the system. 

• Activities: 

o Configured network settings and communication protocols for multiple robots. 

o Tested and validated the connection between robots to ensure seamless data exchange 

and coordination. 

• Outcome: Successfully completed the connection of multiple robots, enabling effective multi-

robot coordination and task execution. 

• Evidence: 

o Network Configuration Files: Screenshots showing network settings for multiple 

robots. 

o Test Video: Video recording successful connection tests between multiple robots. 

Please watch “Multi-robot_dynamic_obstacl_avoidance.MOV”, “Multi-

robot_test.MOV” and “Multi-robot_connection.MOV” 

o Description: Configured and tested the network settings for multiple robots, ensuring 

seamless communication and coordination, which enabled effective multi-robot 

operations. 

 

4. Phase Reporting: 
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• Objective: To document project progress, test results, and other relevant information at each 

project phase. 

• Activities: 

o Prepared detailed reports summarizing the objectives, procedures, results, and conclusions 

of each testing phase. 

o Compiled and presented findings to the project stakeholders, ensuring transparency and 

accountability. 

• Outcome: Provided comprehensive documentation and progress tracking, facilitating informed 

decision-making and project management. 

• Evidence: 

o Reports and Plans: Submitted reports and plans used for project. 

o Video Materials: Links or summaries of recorded videos, showcasing key project 

activities and outcomes. It is shown in Figure 

 

Figure 2 

 

These additional contributions demonstrate my ability to handle a wide range of tasks and 

responsibilities, showcasing my technical skills, teamwork, and dedication to the project's success. They 

also highlight my commitment to ensuring thorough testing, effective communication, and robust system 

integration. 
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Subsystem Function Description 
Multi-Robot Path Planning Subsystem 
The multi-robot path planning subsystem is designed to provide efficient and collision-free navigation for 

multiple robots operating within a warehouse environment (Madridano et al., 2021). This subsystem 

integrates global and local path planning algorithms to ensure optimal pathfinding and real-time obstacle 

avoidance. Below is a detailed description of its components and functionalities. 

Repository Overview 

The complete source code, configuration files, and documentation for the multi-robot path planning 

subsystem are available in the GitHub repository https://github.com/caesar1457/Robotics-Studio-2.git. 

The repository is structured to provide clear organization and easy access to all necessary components for 

setting up and running the system. 

Key Components 

1. Namespace Configuration: 

• The subsystem supports running multiple robots in different namespaces to avoid conflicts and 

ensure smooth operation. 

• To bring up robots in different namespaces, use the following commands: 

ROS_NAMESPACE=tb3_0 roslaunch turtlebot3_bringup turtlebot3_robot.launch 

ROS_NAMESPACE=tb3_1 roslaunch turtlebot3_bringup turtlebot3_robot.launch 

2. Launching the Main Navigation System: 

 

• The main navigation system is launched using the ‘multi_navigation.launch’ file. This file 

configures the necessary parameters and nodes for coordinating multiple robots.To bring up 

robots in different namespaces, use the following commands: 

• Before launching, set the TurtleBot3 model environment variable: 

export TURTLEBOT3_MODEL=waffle_pi 

• Then, launch the main navigation system: 

roslaunch multi_navigation multi_navigation.launch 

3. Task Allocation and Multi-target Navigation:  

 

• The subsystem supports dynamic task allocation, allowing robots to be assigned multiple targets 

efficiently. 

• An example command to send multi-targets to the robots is: 

rostopic pub /task_allocation std_msgs/String "{data: '{"tb3_0": [19,21,27,19], "tb3_1": 

[22,26,28,21]}'}" 

https://github.com/caesar1457/Robotics-Studio-2.git
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• This command publishes a message to the ‘/task_allocation’ topic, specifying the target 

points for each robot. 

Summary 

The multi-robot path planning subsystem in the Robotics Studio 2 project demonstrates a robust approach 

to managing multiple robots within a shared environment. The use of namespaces, combined with 

efficient path planning and task allocation strategies, ensures smooth and effective navigation. All related 

code and documentation are accessible through the project's GitHub repository, providing a 

comprehensive resource for understanding and deploying the subsystem. 

Navigation 

• Function: The navigation component orchestrates the movement of the robots by integrating path 

planning, sensor data, and control signals. It ensures the robots can navigate through the 

environment while avoiding obstacles and reaching their targets efficiently (Lin et al., 2022). 

• Process: 

o Input: Sensor data from laser scans, odometry, and transforms; goal positions. 

o Components: 

▪ move_base: Integrates global and local planners to generate feasible paths 

(Marder-Eppstein, n.d.). 

▪ Global Planner: Computes an initial path to the goal using a global path planning 

algorithm (e.g., Dijkstra or A*) (Red Blob Games, n.d.). 

▪ Local Planner: Adjusts the path dynamically to avoid obstacles in real-time using 

a local path planning algorithm (e.g., DWA) (Red Blob Games, n.d.) 

▪ Costmaps: Represent the environment's layout and obstacles, used by planners to 

calculate paths (Marder-Eppstein, n.d.). 

o Output: Navigation commands (cmd_vel) to control the robot's movement. 

▪ Implementation: The navigation stack is implemented using ROS with the 

move_base package, integrating sensor data through sensor_msgs and transforms 

(tf), and utilizing planners to navigate the environment (Binder et al., n.d.). 
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Recovery Behavior 

• Function: Recovery behaviors in the navigation stack are essential for enabling the robot to 

handle situations where it becomes stuck or encounters issues that prevent it from following the 

planned path. These behaviors help in resetting the robot's position or taking corrective actions to 

ensure it can continue navigating towards its goal (Binder et al., n.d.; Marder-Eppstein, n.d.). 

• Process: 

o Input: Information about the robot's current state, sensor data, and feedback from the 

navigation stack indicating a failure or obstacle. 

o Components: 

▪ Recovery Behaviors: 

▪ Clear Costmap: This behavior clears the local and/or global costmaps to 

remove obstacles that might be no longer relevant but are still considered 

by the robot. 

▪ Rotate Recovery: Involves the robot performing in-place rotations to find a 

new path or to free itself from tight spots. 

▪ Custom Recovery Behaviors: Users can implement custom recovery 

actions suited to specific environments or robot capabilities. 

o Output: Corrective actions that modify the robot's position or path, enabling it to resume 

normal navigation. 

▪ Implementation: Recovery behaviors are implemented as plugins in the ROS 

navigation stack, allowing for flexibility and customization. These behaviors can 

be triggered automatically based on specific conditions or manually through 

commands (Marder-Eppstein, n.d.; Robotics Stack Exchange, n.d.). 
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Coordinate Frames and Namespace Management 

• Function: The coordinate frames and namespace management component ensures the spatial 

relationships between different coordinate frames are maintained accurately and that multiple 

robots can operate in the same environment without conflicts (Robotics Stack Exchange, n.d.). 

• Process: 

o Input: Transforms from various sensors and odometry sources. 

o Components: 

▪ TF Tree: Manages and updates the coordinate frames for the robot and its 

components (Marder-Eppstein, n.d.). 

▪ Namespace: Separates the ROS topics, parameters, and nodes for each robot to 

prevent data collisions and ensure independent operation. 

o Output: Consistent and accurate frame transformations, isolated topic namespaces for 

each robot. 

▪ Implementation: The TF tree is set up using the ‘tf’ package in ROS, with each 

robot’s namespace defined to ensure unique and conflict-free communication 

within a multi-robot system. The setup is visualized and monitored using tools like 

‘rqt_tf_tree’. 
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Global Path Planning: Dijkstra Algorithm 

• Function: The global path planning component uses the Dijkstra algorithm to calculate the 

shortest path from the robot's starting position to its destination. This algorithm ensures that the 

path is optimal in terms of distance, taking into account the static layout of the warehouse (Red 

Blob Games, n.d.). 

• Process: 

o Input: The static map of the warehouse, the robot's current position, and the target 

position. 

o Algorithm: The Dijkstra algorithm processes the map as a weighted graph, where nodes 

represent locations and edges represent possible paths with associated costs (distances). 

o Output: A series of waypoints that form the shortest path from the start to the destination. 

• Implementation: The algorithm is implemented in Python and visualized using Rviz in ROS. The 

paths generated are sent to the robots as navigation goals (Marder-Eppstein, n.d.). 

Global Path Planning: A* Algorithm 

• Function: Initially planned, the A* algorithm was considered for global path planning due to its 

efficiency and heuristic approach, which accelerates the search process by estimating the cost to 

the goal (Red Blob Games, n.d.). 

• Process: 

o Input: The static map of the warehouse, the robot's current position, and the target 

position. 



 

UTS Faculty of Engineering and Information Technology   Assignment Cover Sheet 2016 

o Algorithm: The A* algorithm uses a heuristic to guide the search for the shortest path, 

combining the actual cost to reach a node and an estimated cost to the goal. 

o Output: A set of waypoints representing the optimal path. 

• Implementation: Although A* was initially considered, Dijkstra was ultimately chosen for the 

final implementation due to specific project requirements (Marder-Eppstein, n.d.). 

Local Path Planning: Dynamic Window Approach (DWA) 

• Function: The local path planning component employs the Dynamic Window Approach (DWA) 

to handle real-time obstacle avoidance and path adjustments (Julian98, 2020). 

• Process: 

o Input: Sensor data (e.g., from LIDAR or cameras), current robot velocity, and the 

waypoints from the global path planner. 

o Algorithm: DWA calculates the best velocity commands to ensure smooth and collision-

free movement by considering the robot's dynamics and nearby obstacles. 

o Output: Velocity commands that the robot can execute to follow the path while avoiding 

obstacles. 

• Implementation: DWA is implemented in Python and integrated with the ROS navigation stack 

to control the robot's movements (Marder-Eppstein, n.d.). 

Local Path Planning: Artificial Potential Field (APF) 

• Function: Initially planned, the Artificial Potential Field (APF) method was considered for local 

path planning due to its simplicity in modeling attractive and repulsive forces for navigation 

(Sheng et al., 2010; Gu et al., 2019; Zhang et al., 2021). Please watch “Original_APF.mp4” and 

“Improved_APF.mp4” 

• Process: 

o Input: Current robot position, target position, and locations of obstacles. 

o Algorithm: The APF generates attractive forces towards the target and repulsive forces 

away from obstacles. In the improved version, the repulsive force function also considers 

the distance from the robot to the target, addressing the unreachable problem by modifying 

the repulsive force to be influenced by this distance (Sheng et al., 2010; Gu et al., 2019; 

Zhang et al., 2021). 

o Output: Path adjustments based on the combined potential field. 

• Implementation: Though APF was explored, DWA was chosen for its more robust handling of 

dynamic environments and robot dynamics. The improved APF showed better handling of local 

minima and unreachable targets by incorporating the distance to the target in the repulsive force 

calculation (Du & Nan, 2016; Fan et al., 2020). 

• Improved APF: 
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o The improved APF modifies the repulsive force function to also consider the distance from 

the robot to the target, thereby addressing the problem of local minima and making 

previously unreachable targets accessible. This method ensures a more efficient path 

planning by balancing the attractive and repulsive forces more effectively (Du & Nan, 

2016; Fan et al., 2020). 
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Figure 3 Original APF 

 

 

Figure 4 Improved APF 

 

 

Soft Skills and Team Collaboration 
Throughout the project, effective communication, reflection, peer collaboration, and professional conduct 

played vital roles in our success. 

Good Communication with Clients 
I actively communicated with my tutor and team members to ensure the project's smooth progress. Every 

week, I attended classes and lab sessions, discussing project details with the team. For instance 

⚫ With Fuzhen: We discussed system integration, ROS system details (RViz, Gazebo), and the use of 

TurtleBot3, including its connection and the integration of SLAM and path planning. We provided 

technical support to each other, enhancing our communication skills and teamwork. 

⚫ With Ken: We discussed the overall system flowchart, ROS system selection, and the interface 

between path planning and task allocation. 
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⚫ With Quang: We focused on each project's stage, the challenges encountered, our proposed 

solutions, project expectations, and ways to improve communication and collaboration. 

Challenges and Solutions 
Throughout the project, I encountered numerous challenges that required overcoming fears and self-

directed learning. These challenges included: 

⚫ Installing and using the ROS system. 

⚫ Using Python programming language. 

⚫ Implementing A*, APF, Dijkstra, and DWA algorithms. 

⚫ Utilizing and linking TurtleBot3. 

⚫ Using and editing Gazebo and RViz files, including launch files. 

⚫ Managing multiple namespaces. 

⚫ Ensuring a closed-loop TF tree. 

⚫ Linking single and multiple TurtleBot3 units. 

⚫ Effective team communication. 

⚫ Structuring the overall system. 

⚫ Designing the subsystem framework. 

⚫ Overcoming fear and frustration, staying motivated under pressure. 

⚫ Efficient self-learning. 

⚫ Effective English communication. 

⚫ Registering move_base plugins. 

⚫ Writing and subscribing to topics. 

I extensively researched online resources and videos, gradually solving these technical issues through 

self-learning. When facing prolonged difficulties or negative emotions, I actively communicated with 

Quang and Fuzhen, exchanging opinions and solving problems. We also encouraged each other, 

progressively overcoming all challenges. 

Reflections 
During Design Review 3, I reflected on several key points: 

⚫ Reliability of preliminary research. 

⚫ Reliability of the overall framework and project goals. 

⚫ Reliability of subsystems. 

⚫ Allowing sufficient buffer time. 

⚫ Understanding the implementation process before starting the project. 

⚫ Having backup plans. 

⚫ Necessity of subsystem and integration system testing. 

From the project, I learned the following key lessons and improvement measures: 
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⚫ Ensure detailed research on the subsystem process during preliminary research, linking each stage 

until completion. 

⚫ Confirm the project's framework reliability and set achievable goals through discussions and 

research. 

⚫ Allocate one to two weeks as buffer time during project planning. 

⚫ Prepare alternative solutions early, not relying on a single plan. 

⚫ Capture critical stages during subsystem and integration system testing, avoiding redundancy and 

omissions. 

Peer Assessments 
Peer feedback highlighted my positive impact on team dynamics. I actively communicated, offering 

advice and comfort during setbacks, helping the team reorganize and regain focus. 

⚫ Providing Constructive Feedback: I offered thoughtful and constructive feedback during meetings, 

helping team members refine their ideas and approaches. 

⚫ Encouraging Team Morale: During setbacks, I provided comfort and encouragement, which helped 

maintain a positive and productive atmosphere. 

⚫ Facilitating Problem-Solving: By actively listening and offering solutions, I helped the team 

navigate through difficult issues and stay on track. This included debugging code issues together and 

recommending relevant books and videos for better understanding of subsystems. 

⚫ Promoting Inclusivity: I ensured everyone had a voice in discussions, fostering a collaborative and 

inclusive team environment. 

Professional Conduct in Labs and Studios 
In the lab, I demonstrated professional behavior by: 

⚫ Handling Equipment Carefully: I handled TurtleBot3 and other equipment with care, ensuring they 

were returned promptly after use and stored properly. 

⚫ Maintaining Cleanliness and Order: I avoided shouting, eating, or causing disruptions in the lab, 

maintaining a professional and respectful environment. 

⚫ Respecting Lab Protocols: I adhered to all lab protocols, including proper usage and storage of 

power supplies and other sensitive equipment. 

⚫ Collaborative Etiquette: I respected the workspace of my peers, ensuring a cooperative and 

harmonious working environment. 

⚫ Safety Awareness: I followed all safety guidelines and encouraged my team to do the same, 

prioritizing the well-being of everyone in the lab. 

These efforts in maintaining professionalism and effective team collaboration significantly contributed to 

the project's success, ensuring efficient problem-solving, effective communication, and a positive 

working environment throughout the project lifecycle. 
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Project and Time Management 
⚫ Created detailed project plans and timelines, ensuring tasks were completed on schedule. 

⚫ Regularly reviewed and adjusted plans to accommodate unexpected challenges. 

⚫ Prioritized tasks effectively, focusing on critical milestones. 

⚫ Maintained clear and organized documentation for all project activities. 

These soft skills and team collaboration efforts significantly contributed to the project's success, ensuring 

efficient problem-solving, effective communication, and professional conduct throughout the project 

lifecycle. 

Conclusion 
The multi-robot path planning project successfully achieved its objectives of designing and implementing 

a robust system capable of efficient and collision-free navigation in a dynamic warehouse environment. 

Through the integration of advanced path planning algorithms and effective coordination mechanisms, 

the system demonstrated its ability to handle complex tasks involving multiple robots. 

Key findings and outcomes 
• Effective Global Path Planning: 

◼ The Dijkstra algorithm was effectively utilized for global path planning, ensuring that the 

shortest and most efficient paths were calculated for robots to navigate from their starting points 

to their destinations. This algorithm's accuracy and reliability were confirmed through extensive 

testing and real-world simulations. 

• Dynamic Local Path Planning: 

◼ The Dynamic Window Approach (DWA) provided robust real-time obstacle avoidance and path 

adjustment capabilities. The integration of DWA with the ROS navigation stack enabled the 

robots to navigate safely through dynamic environments, avoiding both static and moving 

obstacles. 

• Initial Considerations and Adaptations: 

◼ The project initially explored the use of the A* algorithm for global path planning and the 

Artificial Potential Field (APF) method for local path planning. Although these methods were 

not used in the final implementation, the insights gained from their exploration contributed to 

the project's overall success. 

• Seamless Coordination and Communication: 

◼ The task assignment module efficiently distributed tasks among the robots, while the SLAM 

module provided real-time map updates and localization. The inter-robot communication 

mechanisms ensured that robots could share positional and path information, preventing 

collisions and optimizing overall system efficiency. 

• Comprehensive Testing and Validation: 
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◼ Extensive testing validated the system's ability to generate and follow paths, avoid dynamic 

obstacles, and coordinate multiple robots. The successful execution of these tests demonstrated 

the system's reliability and robustness in handling real-world scenarios. 

Suggestions for future work 
• Enhanced Algorithm Integration: 

◼ Extensive testing validated the system's ability to generate and follow paths, avoid dynamic 

obstacles, and coordinate multiple robots. The successful execution of these tests demonstrated 

the system's reliability and robustness in handling real-world scenarios. 

• Advanced Obstacle Avoidance: 

◼ Investigating and implementing more sophisticated local path planning methods, such as 

machine learning-based approaches, could enhance the system's ability to handle highly 

dynamic and unpredictable environments. 

• Scalability Improvements: 

◼ Enhancing the system's scalability to manage a larger fleet of robots would be beneficial for 

larger warehouse operations. This could involve optimizing communication protocols and task 

assignment strategies. 

• Real-World Deployment: 

◼ Conducting real-world deployment and testing in an actual warehouse setting would provide 

valuable insights and help refine the system to meet practical operational challenges. 

The multi-robot path planning system developed in this project has demonstrated its capability to provide 

efficient, safe, and reliable navigation solutions in a warehouse environment. The successful integration 

of Dijkstra and DWA algorithms, coupled with effective coordination and communication mechanisms, 

has ensured the system's robustness and practicality. The lessons learned and the outcomes achieved lay a 

strong foundation for further advancements and real-world applications in multi-robot systems.  
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Appendix 
1. https://github.com/caesar1457/Robotics-Studio-2.git 

• Description: This repository contains all the code related to the Robotics Studio 2 project. It 

includes the source code, configuration files, and documentation for setting up and running 

the multi-robot path planning system. The repository is structured to provide a clear 

organization of the project's components, making it easy to navigate and understand the 

implementation details. 

• Video Link: https://github.com/caesar1457/Robotics-Studio-2.git 

2. Trailer.mp4 

 

• Description: This video showcases the key achievements of the Robotics Studio 2 project, 

divided into four sections: 

◼ A Visualized Search*: Demonstrates the A* algorithm in path planning, showing the 

optimal pathfinding process. 

◼ Multi-Robot Dynamic Obstacle Avoidance: Highlights real-time dynamic obstacle 

avoidance by multiple robots. 

◼ Multi-Goal Navigation Allocation: Displays efficient target allocation and navigation 

for multiple robots to various goals. 

◼ Multi-Robot Connectivity and Path Planning: Showcases coordinated path planning 

and communication between multiple robots. 

• Video Link: Trailer.mp4 

3. Astar.mp4 

• Description: This video demonstrates the process and results of path planning using the A* 

algorithm. The robot navigates the simulated environment following paths generated by the 

A* algorithm, verifying the algorithm's effectiveness and efficiency. 

• Video Link: Astar.mp4 

4. Control_Pathplanning.mp4 

• Description: This video showcases the integration test of the path planning and control 

systems. The robot navigates according to the planned paths, demonstrating the overall 

coordination and control effectiveness of the system. 

• Video Link: Control_Pathplanning.mp4 

5. multi_navigation.mp4 

• Description: This video displays the navigation process of multiple robots within the same 

environment. It verifies the coordination and path planning capabilities of the multi-robot 

system, ensuring that each robot can effectively avoid obstacles and complete their respective 

tasks. 

• Video Link: multi_navigation.mp4 

6. multi_robot_navi.mp4 

• Description: This video records the coordination of multiple robots executing navigation 

tasks in a complex environment. It highlights the communication and collaboration between 

robots to avoid collisions and optimize overall path efficiency. 

• Video Link: multi_robot_navi.mp4 

7. SLAM_mapping.mp4 

• Description: This video demonstrates the process of the SLAM system generating a map of 

the environment and how the path planning system utilizes these maps for path planning. It 

verifies the integration of the SLAM and path planning systems. 

• Video Link: SLAM mapping.mp4 

8. TurtleBot_Control.mp4 

• Description: This video shows the control test of the TurtleBot in a test environment. The 

TurtleBot receives and executes movement commands, demonstrating its movement 

capabilities and the effectiveness of the control algorithm. 

• Video Link: TurtleBot Control.mp4 

https://github.com/caesar1457/Robotics-Studio-2.git
https://github.com/caesar1457/Robotics-Studio-2.git
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/EfjqT9gnK1lHrktWnIVBNssBUml5UzuWUadHMvyUHucKEg?e=4vgHLA
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/Eb-qGu6Lnj5LmejNwQ9tzp0BfYFO8csybDPyjEurtp8-zQ?e=vzEn7I
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/Ef-hrRdIUK9Auz3S_heZDaoBQYyHRfh6kX2vuhrN__X3hQ?e=vtmlYO
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/EUm2fWfmo7lLipmW-mdEVO4BLYnJhTcDIen0MIPwqjc5qg?e=inziFJ
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/ESZvYwzMydlEuOY2mMbyXUYBS29dg96ERLIK7EOC12EF_g?e=eX26ZT
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/Ef_BfSeOPWpLk5OQ9fwC0DgBLIe1l_nmCP0Q_qK3jWBHhA?e=EVR8MX
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/EXOXa4nUVs9Cpt17Dm6yoKoBt45BdW5HYsTooCHdKJJC0g?e=rb8KpM
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9. Multi-robot_connection_test.mov 

• Description: This video demonstrates the connection test of multiple robots in the system. It 

shows how the robots are interconnected and communicate with each other to coordinate their 

actions. 

• Video Link: Multi-robot_connection.MOV 

10. Multi-robot_dynamic_test.mov 

• Description: This video shows the dynamic obstacle avoidance test of multiple robots in a 

simulated environment. It highlights the robots' ability to dynamically navigate and avoid 

obstacles in real-time. 

• Video Link: Multi-robot_dynamic_obstacl_avoidance.MOV 

11. Multi-robot_testing.mov 

• Description: This video presents the overall testing of multiple robots, including movement 

coordination and task execution. It illustrates the successful implementation and testing of the 

multi-robot system. 

• Video Link: Multi-robot_test.MOV 

12. Original_APF.mp4 

• Description: This video demonstrates the implementation of the original Artificial Potential 

Field (APF) method for robot navigation. The robot navigates towards the target while 

avoiding obstacles using the standard APF algorithm. 

• Video Link: Original_APF.mp4 

13. Improved_APF.mp4 

• Description: This video showcases the improved APF method, which enhances the repulsive 

force function by considering the distance from the robot to the target point. This 

modification aims to resolve the issue of unreachable targets. The robot demonstrates more 

effective navigation and obstacle avoidance compared to the original APF method. 

• Video Link: Improved_APF.mp4 

14. multi_targets_navigation.mp4 

• Description: This video demonstrates the simultaneous navigation of multiple robots to 

multiple target points within a simulated environment. Each robot is assigned a set of unique 

target points and uses path planning algorithms to navigate to these points while avoiding 

obstacles and collisions with other robots. The video showcases the coordination and 

efficiency of multi-robot systems in complex navigation tasks. 

• Video Link: multi_targets_navigation.mp4 

15. navigation_task_list.mp4 

• Description: This video illustrates the execution of a task list by a robot navigating within a 

simulated environment. The robot is tasked with visiting a sequence of designated points, 

showcasing its ability to prioritize tasks and efficiently plan its path. The video highlights the 

robot's capabilities in dynamic task management and obstacle avoidance using advanced path 

planning techniques. 

• Video Link: navigation_task_list.mp4 
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