

Multi-Robot Navigation System

Author: Caesar (Zhiye) Zhao

Institution: University of Technology Sydney (UTS)

Supervisor: Dr. Felix Kong

Project Type: Team Research & System Implementation

Date: March 2025

Abstract:

This report presents the design, implementation, and evaluation of a

multi-robot navigation system. The system integrates collaborative path

planning, dynamic obstacle avoidance, and decentralized control. It

utilizes Simultaneous Localization and Mapping (SLAM), Dijkstra’s

algorithm for global path planning, and Model Predictive Control (MPC)

for local trajectory generation. The system’s effectiveness is validated

through both simulation and physical robot experiments.

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

Table of Contents
Introduction ... 3

Project Background and Objectives .. 3
Brief introduction to the Overall System Architecture ... 3

Contract and System Architecture .. 4

Requirements and Contract from Review 1 .. 4
System Architecture Details.. 4

Test Plans and Evidence of Completion ... 6
Subsystem Test Plan ... 6
System Integration Test Plan .. 9

Other Contributions... 13
Subsystem Function Description .. 18

Multi-Robot Path Planning Subsystem ... 18

Soft Skills and Team Collaboration .. 24
Good Communication with Clients... 24
Challenges and Solutions .. 25
Reflections .. 25
Peer Assessments .. 26

Professional Conduct in Labs and Studios .. 26
Project and Time Management ... 27

Conclusion .. 27
Key findings and outcomes ... 27

Suggestions for future work .. 28
References ... 29

Appendix ... 31

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

Introduction
Project Background and Objectives
Multi-robot systems are becoming increasingly important in modern industrial and service applications,

particularly in warehouse logistics, agricultural automation, disaster response, and security. Multi-robot

path planning is a crucial technology to ensure these robots efficiently complete their tasks. The goal of

path planning is to find an optimal path for each robot from its starting position to its destination while

avoiding obstacles and other robots. Achieving this goal requires a combination of global path planning

and local path planning methods to ensure efficient navigation in complex and dynamic environments

(Lin et al., 2022).

This project aims to design and implement a multi-robot path planning system using the Dijkstra

algorithm for global path planning and the Dynamic Window Approach (DWA) for local path planning.

Additionally, the initial design includes an exploration of the A* algorithm and the Artificial Potential

Field (APF) method to investigate their performance and suitability for path planning tasks (Chen et al.,

2020; Zhao & Zhu, 2011; Du & Nan, 2016).

Brief introduction to the Overall System Architecture
This project aims to design and implement a multi-robot path planning system using the Dijkstra

algorithm for global path planning and the Dynamic Window Approach (DWA) for local path planning.

Additionally, the initial design includes an exploration of the A* algorithm and the Artificial Potential

Field (APF) method to investigate their performance and suitability for path planning tasks (Madridano et

al., 2021).

The entire multi-robot path planning system consists of several key modules:

1. Task Assignment Module: Responsible for assigning tasks to robots based on their current states

and task priorities, ensuring that each robot can reasonably complete its assigned tasks.

2. Path Planning Module: Comprises global and local path planning submodules. Global path

planning uses the Dijkstra algorithm to determine the optimal path from the start position to the

goal position, while local path planning uses the DWA algorithm to handle real-time obstacle

avoidance, ensuring the robot's safe movement in a dynamic environment.

3. SLAM (Simultaneous Localization and Mapping) Module: Utilizes Adaptive Monte Carlo

Localization (AMCL) to create and update the environment map while accurately tracking each

robot's position.

Through the collaborative operation of these modules, the multi-robot system can efficiently complete

path planning and task execution in complex environments. This project not only implements the above

functional modules but also ensures the system's stability and reliability through detailed testing and

validation, laying a solid foundation for the deployment of multi-robot systems in real-world applications.

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

Contract and System Architecture
Requirements and Contract from Review 1
Trajectory planning: Implement dynamic integration of global and local path planning in a multi-robot

system, aiming to explore and optimize the optimal route in real time.

⚫ F: PRM, Dijkstra/A* with no collision checking against other robot

⚫ P: PRM, Dijkstra/A* with post-processing collision checking against other robot

⚫ C: Any kind of planning that collision checks with other robot during the moving stage

⚫ D: Plus, path smoothing to make it so that robots don’t have to stop and spot turn.

⚫ HD: Integrate local path planning and global path planning to find the global optimal path and adjust

the local optimal path in real time to complete complex tasks.

System Architecture Details
The system architecture consists of three main parts: task assignment, multi-robot path planning, and

multi-robot SLAM. The architecture is designed to ensure efficient task allocation, path planning, and

real-time environment mapping and updates. Figure 1 in the system architecture diagram illustrates the

details and interactions of each module.

Figure 1

1. Task Assignment Module:

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

o Function: Delivers and retrieves items task queue for each warehouse robot based on

location and task completion time.

o Inputs: Time taken to finish tasks, robot IDs, location of items in the warehouse, robot

task queue/priority.

o Outputs: Robot IDs for task allocation, task details including start and end points.

2. Path Planning Module:

o Function: Takes robot IDs and locations of start and end points to output a path for each

robot. Conducts replanning if a collision occurs according to the task queue.

o Inputs: Robot IDs, locations of start and end points, task queue.

o Outputs: Robot tasks and paths.

3. SLAM (Simultaneous Localization and Mapping) Module:

o Function: Maps the area of the warehouse and obstacles, outputs the position of each

robot.

o Inputs: Collision check, sensory data.

o Outputs: Location of each robot, updated maps.

4. Control Module:

o Function: Ensures robots follow the planned paths and handles collision checks/obstacle

avoidance. Provides sensory data for localization.

o Inputs: Path information from the path planning module, sensory data.

o Outputs: Control commands for robots, updated sensory data.

System Integration:

• The Task Assignment Module assigns tasks to robots and provides initial path details to the Path

Planning Module.

• The Path Planning Module calculates the optimal paths using global path planning (Dijkstra/A*)

and adjusts the paths in real-time using local path planning methods (DWA/APF).

• The SLAM Module continuously updates the environment map and robot positions, providing

necessary data for path replanning.

• The Control Module ensures the robots follow the planned paths and adjusts for any dynamic

obstacles or changes in the environment.

The integrated system allows for efficient multi-robot coordination and dynamic path planning, enabling

robots to complete complex tasks in real-time while avoiding collisions and optimizing their routes.

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

Test Plans and Evidence of Completion
In this section, we will detail the test plans and evidence of completion for each phase of the project. The

test plans cover various aspects, from subsystem testing to system integration testing, ensuring the

functionality, reliability, and performance of the system. The following are the specific test plans and

results.

Subsystem Test Plan
First, we conducted tests on the path planning subsystem. These tests aimed to verify the effectiveness

and safety of the path planning system in a multi-robot warehouse environment.

Task State Evidence

Test 1: Path Generation and Following

• Requirement: Verify the system can generate

optimal paths for each robot to reach

designated destinations.

• Test Procedure: In the simulation

environment, assign a destination for each

robot, have the system generate paths, and

make the robots follow these paths.

• Evaluation Criteria: All robots reach their

destinations without collisions, following the

optimal paths.

• Additional Resources: High-precision

warehouse map from SLAM.

• Input: map, robot and target position

• Output: path without collisions with

obstacles

• Software: Rviz in ROS or Python

• Language: Python

• Algorithm: A*

Pass

Photo: These two photos show the

paths generated by two robots using

A* in the laboratory map and the

maze map, respectively.

Video recording: Please watch

“Astra. mp4”

Explanation: The photos show the

A* algorithm's path generation

process for robots in different

environments. The top image is the

laboratory map, and the bottom is

the maze map. Both images

visualize the A* algorithm's

process , meeting the test criteria.

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

Test 2: Dynamic Obstacle Avoidance

• Requirement: Verify the system can replan

paths when encountering unexpected

obstacles.

• Test Procedure: Introduce obstacles

randomly on the path of a robot during task

execution and observe the system's response.

• Evaluation Criteria: Robots can replan their

paths to avoid them and continue their tasks.

• Additional Resources: Dynamic obstacle

simulator.

• Input: map, robot and target position,

dynamic model

• Output: path without collisions with

obstacles and dynamic model, simulation that

the robot can go through the map has the

dynamic model

• Software: Rviz in ROS or Python

• Language: Python

• Algorithm: APF

Pass

Photo: These two photos show three

robots performing path planning in a

laboratory map and another map,

respectively.

Video recording: Please watch

“multi_robot_navi. mp4” and

“multi_navigation. mp4”

Explanation: The photos illustrate
the global and local path planning
processes for three robots as part
of the dynamic obstacle avoidance
test. The top image shows the
robots navigating in a laboratory
map, while the bottom image
shows them navigating in another
map. Both images visualize how
the robots adapt their paths in
response to dynamic obstacles,
demonstrating the effectiveness of
the algorithm used in the test.

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

Test 3: Multi-Robot Coordination

• Requirement: Verify the system can

coordinate actions among multiple robots to

avoid collisions and optimize overall path

efficiency.

• Test Procedure: Deploy multiple robots in

the simulation environment to perform

different tasks simultaneously, observing

the coordination mechanism between

robots.

• Evaluation Criteria: Robots can coordinate

with each other to avoid collisions while

executing tasks and optimize overall path

efficiency as much as possible.

• Additional Resources: Command from

Multi-task allocation

• Input: map, command (robots and targets

position)

• Output: path without collisions with

obstacles and each robot, a simulation that

the robot can go through the map has the

dynamic model and multi-robot

• Software: Rviz in ROS or Python

• Language: Python

• Algorithm: APF/DWA

Pass

Photo: These two photos show three

robots performing path planning in a

laboratory map and another map,

respectively.

Video recording: Please watch

“multi_robot_navi. mp4”,

“multi_navigation. mp4” and “Multi-

robot_dynamic_obstacl_avoidance.MOV”

Explanation: The photos illustrate the
global and local path planning
processes for three robots as part of
the multi-robot coordination test. The
top image shows the robots navigating
in a laboratory map, while the bottom
image shows them navigating in
another map. Both images visualize
how the robots coordinate their paths
to avoid collisions and optimize overall
path efficiency, demonstrating the
effectiveness of the algorithm used in
this test.

Table 1

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

System Integration Test Plan
The system integration tests included several critical steps to verify the coordination and performance of

the path planning, SLAM, and task allocation subsystems within the multi-robot system.

Task State Evidence
Test 1: TurtleBot Integration Test Control

Requirement:

The test aims to ensure that the TurtleBot can

accurately follow movement commands and that the

control algorithm package is effective in real-world

scenarios. This involves two primary aspects: the

TurtleBot's ability to move as commanded and the

control algorithm's ability to accurately guide the

TurtleBot along a planned path, including

navigating around obstacles.

Test Procedure:

⚫ Movement Capability Test:

◼ Send movement commands to the

TurtleBot via the control repository,

including forward, backward, and

turning motions.

◼ Monitor the TurtleBot's response to these

commands and its execution of the

corresponding movements.

⚫ Control Algorithm Package Validation:

◼ Utilize functions within the control

algorithm package to generate path

planning and movement instructions.

◼ Apply these instructions to test if the

TurtleBot can move accurately along the

path planned by the algorithm package.

◼ Observe the TurtleBot's response to

environmental factors, such as obstacle

avoidance and path adjustment

behaviors, to assess the practical

effectiveness of the control algorithm.

Evaluation Criteria:

Movement Response: The TurtleBot should

execute movements accurately and precisely

according to the issued commands.

Effectiveness of the Control Algorithm: The

TurtleBot should be able to navigate according to

the path planned by the control algorithm package,

demonstrating path planning and obstacle avoidance

capabilities.

Pass

Photo: The photo above shows control

TurtleBot movement

Video recording: Please watch “Control

TurtleBot movement. mp4”

Explanation: We have successfully connected

the TurtleBot3 and are able to use the control

package to ensure that the TurtleBot3 can

move along the trajectory. The control

principle is Dynamixel control, which

communicates and controls the TurtleBot3

through the 'cmd_vel' topic.

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

Test 2: Test SLAM and path planning

Requirement:

The test focuses on verifying the system's ability to

generate a map using SLAM and then utilize this

map for path planning. The path planner should be

able to take the generated map and use it to formulate

a path from a specified start position to a target

position.

Test Procedure:

⚫ SLAM Simulation:

◼ Initiate the SLAM process to explore the

environment and generate a detailed map.

This may involve the robot moving

through a test area or a simulated

environment, depending on the testing

setup.

◼ Ensure the map includes all necessary

details for path planning, such as

obstacles, open spaces, and potentially

hazardous areas.

⚫ Path Planning Implementation:

◼ Input the start and target positions into the

path planning algorithm.

◼ Use the map generated from the SLAM

process as the basis for path planning.

◼ Execute the path planning algorithm to

calculate a viable path from the start to the

target position, considering obstacles and

optimal routing.

Evaluation Criteria:

Map Reception: The system should successfully

receive and process the map generated from the

SLAM procedure.

Path Generation: A path should be successfully

generated based on the SLAM-derived map and the

specified start and target positions. The generated

path should be practical, safe, and efficient,

demonstrating the effectiveness of the path planning

algorithm.

Pass

Photo: The photo above shows navigate and

generate SLAM maps

Video recording: Please watch “SLAM

mapping. mp4”

Explanation: We found two ways for

subsystems to communicate with each other.

The first is for the path planning to obtain the

dynamic map of SLAM by subscribing to the

'/map' topic, which is published by gmapping.

The second method is for SLAM to save the

static map to a designated folder, then read and

publish it to the '/map ' topic via map_server,

which is then subscribed to by the path

planning.

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

Test 3: Test Task Allocation and Path Planning

Integration

Requirement:

The goal of this test is to ensure that the task

allocation system can communicate with and

exchange data with the path planning system. This

interaction should be capable of generating

information about the distance matrix and task

allocation lists for each TurtleBot. Specific

requirements include:

Communication between Task Allocation and

Path Planning: The task allocation system must be

able to send a list of tasks to the path planning system

and be capable of receiving feedback from the path

planning system.

Generation of Distance Matrix and Task Lists:

Upon receiving the task list, the path planning system

generates a corresponding distance matrix and feeds

this information back to the task allocation system.

The task allocation system then updates the task list

for each TurtleBot based on the distance matrix.

Test Procedure:

⚫ Distance Matrix Generation and Sharing:

◼ The path planning system initiates the

process by generating a distance matrix

between the tartgets and each robot.

◼ This distance matrix is then shared with

the task allocation system as the

foundation for task allocation.

⚫ Task Allocation and Task List Creation:

◼ Upon receiving the distance matrix, the

task allocation system uses it to allocate

tasks among the available TurtleBots,

considering factors such as proximity and

task urgency.

◼ A detailed task list for each TurtleBot is

created and sent back to the path planning

system.

⚫ Path Planning for Each TurtleBot:

◼ With the updated task lists, the path

planning system calculates and generates

optimal path plans for each TurtleBot,

ensuring each robot efficiently completes

its assigned tasks.

Evaluation Criteria: Success is measured by the

path planning system's ability to receive the task list

and generate efficient path plans for each TurtleBot,

allowing for the completion of tasks in an optimized

manner.

Pass

Photo: The interface highlights different

TurtleBots, each assigned specific tasks and

routes

Video recording: Please watch

“multi_targets_navigation.mp4” and

“navigation_task_list.mp4”

Explanation: The video
"multi_targets_navigation.mp4" shows the
process where multiple robots, upon
receiving their task lists from the task
allocation system, simultaneously execute
multi-target navigation tasks and complete
them. The video provides a detailed
demonstration of how each TurtleBot
dynamically receives task lists and executes
assigned tasks based on the distance matrix
and task urgency. Each robot, following the
instructions from the task allocation system
and supported by the path planning system,
calculates the optimal path and performs the
navigation tasks.

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

Integration Test 4: Full Simulation Test

Requirement:

The objective of this test is to conduct a full

simulation involving one iteration of the task list,

where task allocation, path planning, and SLAM are

integrated to produce an output for a set task list. The

robots must successfully move to the correct

locations assigned to them. This requires:

Integration of SLAM, Task Allocation, and Path

Planning: All subsystems must work together

seamlessly to utilize the map generated by SLAM for

task allocation and path planning.

Successful Navigation to Assigned Locations: Each

robot must accurately navigate to its designated

locations as per the task list, demonstrating the

effectiveness of the integrated system.

Test Procedure:

SLAM Map Generation: Begin the simulation with

SLAM to create a detailed map of the environment.

This map is essential for accurate task allocation and

path planning.

Task Allocation: Based on the generated map and

the given task list, allocate tasks to each robot,

ensuring the tasks are feasible within the mapped

environment.

Path Planning: Generate path plans for each robot

based on the task allocations. These plans should

take into consideration the layout of the environment

as defined by the SLAM map to ensure efficient and

obstacle-free navigation.

Execute Movements: The path plans are sent to the

robots. Each robot follows its path plan to move to

the correct locations assigned to it.

Evaluation Criterion: The criterion for a

successful test is that each TurtleBot moves to all

locations specified on the task list successfully.

Pass

Photo: Include an image that visually
represents the integration of the SLAM, task
allocation, and path planning processes.

Explanation: During this integration test,
the subsystems for SLAM, task allocation,
and path planning must work cohesively.
The generated map from SLAM provides the
necessary spatial information for task
allocation. Each robot's path planning
module uses this map to generate viable
paths, ensuring each robot can navigate to
its designated locations efficiently. The test
validates the system's capability to perform
complex tasks in a coordinated manner,
simulating real-world scenarios where
multiple robots need to operate
simultaneously in a shared environment.

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

Test 5: Computational Load Test (Optional)

Requirement:

This test is designed to assess the laptop's capability

to handle the computational demands of a

comprehensive warehouse simulation integrating

multiple subsystems. These include running various

algorithms and simulations simultaneously, which

are essential for the operation of a dynamic

warehouse environment. The laptop used must be

able to continuously run the entire simulation setup

without crashing or experiencing significant

performance degradation. Key requirements include:

System Stability: The laptop must maintain

operational stability throughout the test, without any

system crashes or freezes.

Performance Maintenance: The laptop should not

suffer from significant performance issues that could

impede the running of simulations or algorithms.

This includes managing thermal loads to prevent

throttling and ensuring sufficient memory and

processing resources are available.

Test Procedure:

Setup and Initialization: Configure the laptop with

the necessary software and simulations that represent

the integrated warehouse system. This setup should

include all subsystems and the corresponding

algorithms they run.

Simultaneous Operation: Start all subsystems

simultaneously on the laptop. This operation should

mimic the computational load expected during the

peak operation of the warehouse simulation.

Monitoring: Throughout the test, monitor the

laptop's performance metrics, including CPU and

GPU usage, memory utilization, and thermal

statistics. Use appropriate tools to log these metrics

for later analysis.

Evaluation Criterion: The laptop must complete

the test without crashing, experiencing system

freezes, or significant performance throttling.

Successfully running the simulation without

interruption and maintaining responsive system

behavior throughout the test period are key

indicators of passing this test.

No
pass

Explanation: After our evaluation, it is

temporarily impossible to run all the systems

on a single laptop because our virtual machine

may crash. Although it is possible to

communicate using a server on different

laptops within the same local area network, we

no longer have time for this. Therefore, we can

only give up this optional test.

Table 2

Other Contributions
Throughout the project, I also contributed significantly in other areas, including:

1. TurtleBot Integration Test Control:

• Objective: To verify the TurtleBot's movement capabilities and the effectiveness of the control

algorithm package in real-world scenarios.

• Activities:

o Sent movement commands to the TurtleBot and monitored its response.

o Utilized functions within the control algorithm package to generate path planning and

movement instructions.

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

o Ensured the TurtleBot accurately followed the planned paths and demonstrated effective

obstacle avoidance.

• Outcome: Successfully connected and controlled TurtleBot3, ensuring it could move along the

trajectory as planned. This included using Dynamixel control via the 'cmd_vel' topic for

communication and control.

• Evidence:

o Photo: Image showing TurtleBot3 successfully navigating a path.

o Video: " Control_Pathplanning.mp4" demonstrating the TurtleBot following the planned

path.

o Description: Successfully executed commands and observed the TurtleBot navigating the

planned path, avoiding obstacles, and responding accurately to control inputs.

2. Team Communication and Collaboration:

• Objective: To foster effective communication and collaboration within the project team, ensuring

smooth project progress and integration.

• Activities:

o Actively participated in team meetings and discussions.

o Assisted team members with technical issues and provided support for subsystem

integration.

o Coordinated efforts to ensure all team members were aligned with project goals and

timelines.

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

• Outcome: Maintained a high level of teamwork and mutual support, contributing to the overall

efficiency and success of the project.

3. Multi-Robot Connection:

• Objective: To establish and verify the connection and communication between multiple robots

within the system.

• Activities:

o Configured network settings and communication protocols for multiple robots.

o Tested and validated the connection between robots to ensure seamless data exchange

and coordination.

• Outcome: Successfully completed the connection of multiple robots, enabling effective multi-

robot coordination and task execution.

• Evidence:

o Network Configuration Files: Screenshots showing network settings for multiple

robots.

o Test Video: Video recording successful connection tests between multiple robots.

Please watch “Multi-robot_dynamic_obstacl_avoidance.MOV”, “Multi-

robot_test.MOV” and “Multi-robot_connection.MOV”

o Description: Configured and tested the network settings for multiple robots, ensuring

seamless communication and coordination, which enabled effective multi-robot

operations.

4. Phase Reporting:

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

• Objective: To document project progress, test results, and other relevant information at each

project phase.

• Activities:

o Prepared detailed reports summarizing the objectives, procedures, results, and conclusions

of each testing phase.

o Compiled and presented findings to the project stakeholders, ensuring transparency and

accountability.

• Outcome: Provided comprehensive documentation and progress tracking, facilitating informed

decision-making and project management.

• Evidence:

o Reports and Plans: Submitted reports and plans used for project.

o Video Materials: Links or summaries of recorded videos, showcasing key project

activities and outcomes. It is shown in Figure

Figure 2

These additional contributions demonstrate my ability to handle a wide range of tasks and

responsibilities, showcasing my technical skills, teamwork, and dedication to the project's success. They

also highlight my commitment to ensuring thorough testing, effective communication, and robust system

integration.

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

Subsystem Function Description
Multi-Robot Path Planning Subsystem
The multi-robot path planning subsystem is designed to provide efficient and collision-free navigation for

multiple robots operating within a warehouse environment (Madridano et al., 2021). This subsystem

integrates global and local path planning algorithms to ensure optimal pathfinding and real-time obstacle

avoidance. Below is a detailed description of its components and functionalities.

Repository Overview

The complete source code, configuration files, and documentation for the multi-robot path planning

subsystem are available in the GitHub repository https://github.com/caesar1457/Robotics-Studio-2.git.

The repository is structured to provide clear organization and easy access to all necessary components for

setting up and running the system.

Key Components

1. Namespace Configuration:

• The subsystem supports running multiple robots in different namespaces to avoid conflicts and

ensure smooth operation.

• To bring up robots in different namespaces, use the following commands:

ROS_NAMESPACE=tb3_0 roslaunch turtlebot3_bringup turtlebot3_robot.launch

ROS_NAMESPACE=tb3_1 roslaunch turtlebot3_bringup turtlebot3_robot.launch

2. Launching the Main Navigation System:

• The main navigation system is launched using the ‘multi_navigation.launch’ file. This file

configures the necessary parameters and nodes for coordinating multiple robots.To bring up

robots in different namespaces, use the following commands:

• Before launching, set the TurtleBot3 model environment variable:

export TURTLEBOT3_MODEL=waffle_pi

• Then, launch the main navigation system:

roslaunch multi_navigation multi_navigation.launch

3. Task Allocation and Multi-target Navigation:

• The subsystem supports dynamic task allocation, allowing robots to be assigned multiple targets

efficiently.

• An example command to send multi-targets to the robots is:

rostopic pub /task_allocation std_msgs/String "{data: '{"tb3_0": [19,21,27,19], "tb3_1":

[22,26,28,21]}'}"

https://github.com/caesar1457/Robotics-Studio-2.git

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

• This command publishes a message to the ‘/task_allocation’ topic, specifying the target

points for each robot.

Summary

The multi-robot path planning subsystem in the Robotics Studio 2 project demonstrates a robust approach

to managing multiple robots within a shared environment. The use of namespaces, combined with

efficient path planning and task allocation strategies, ensures smooth and effective navigation. All related

code and documentation are accessible through the project's GitHub repository, providing a

comprehensive resource for understanding and deploying the subsystem.

Navigation

• Function: The navigation component orchestrates the movement of the robots by integrating path

planning, sensor data, and control signals. It ensures the robots can navigate through the

environment while avoiding obstacles and reaching their targets efficiently (Lin et al., 2022).

• Process:

o Input: Sensor data from laser scans, odometry, and transforms; goal positions.

o Components:

▪ move_base: Integrates global and local planners to generate feasible paths

(Marder-Eppstein, n.d.).

▪ Global Planner: Computes an initial path to the goal using a global path planning

algorithm (e.g., Dijkstra or A*) (Red Blob Games, n.d.).

▪ Local Planner: Adjusts the path dynamically to avoid obstacles in real-time using

a local path planning algorithm (e.g., DWA) (Red Blob Games, n.d.)

▪ Costmaps: Represent the environment's layout and obstacles, used by planners to

calculate paths (Marder-Eppstein, n.d.).

o Output: Navigation commands (cmd_vel) to control the robot's movement.

▪ Implementation: The navigation stack is implemented using ROS with the

move_base package, integrating sensor data through sensor_msgs and transforms

(tf), and utilizing planners to navigate the environment (Binder et al., n.d.).

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

Recovery Behavior

• Function: Recovery behaviors in the navigation stack are essential for enabling the robot to

handle situations where it becomes stuck or encounters issues that prevent it from following the

planned path. These behaviors help in resetting the robot's position or taking corrective actions to

ensure it can continue navigating towards its goal (Binder et al., n.d.; Marder-Eppstein, n.d.).

• Process:

o Input: Information about the robot's current state, sensor data, and feedback from the

navigation stack indicating a failure or obstacle.

o Components:

▪ Recovery Behaviors:

▪ Clear Costmap: This behavior clears the local and/or global costmaps to

remove obstacles that might be no longer relevant but are still considered

by the robot.

▪ Rotate Recovery: Involves the robot performing in-place rotations to find a

new path or to free itself from tight spots.

▪ Custom Recovery Behaviors: Users can implement custom recovery

actions suited to specific environments or robot capabilities.

o Output: Corrective actions that modify the robot's position or path, enabling it to resume

normal navigation.

▪ Implementation: Recovery behaviors are implemented as plugins in the ROS

navigation stack, allowing for flexibility and customization. These behaviors can

be triggered automatically based on specific conditions or manually through

commands (Marder-Eppstein, n.d.; Robotics Stack Exchange, n.d.).

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

Coordinate Frames and Namespace Management

• Function: The coordinate frames and namespace management component ensures the spatial

relationships between different coordinate frames are maintained accurately and that multiple

robots can operate in the same environment without conflicts (Robotics Stack Exchange, n.d.).

• Process:

o Input: Transforms from various sensors and odometry sources.

o Components:

▪ TF Tree: Manages and updates the coordinate frames for the robot and its

components (Marder-Eppstein, n.d.).

▪ Namespace: Separates the ROS topics, parameters, and nodes for each robot to

prevent data collisions and ensure independent operation.

o Output: Consistent and accurate frame transformations, isolated topic namespaces for

each robot.

▪ Implementation: The TF tree is set up using the ‘tf’ package in ROS, with each

robot’s namespace defined to ensure unique and conflict-free communication

within a multi-robot system. The setup is visualized and monitored using tools like

‘rqt_tf_tree’.

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

Global Path Planning: Dijkstra Algorithm

• Function: The global path planning component uses the Dijkstra algorithm to calculate the

shortest path from the robot's starting position to its destination. This algorithm ensures that the

path is optimal in terms of distance, taking into account the static layout of the warehouse (Red

Blob Games, n.d.).

• Process:

o Input: The static map of the warehouse, the robot's current position, and the target

position.

o Algorithm: The Dijkstra algorithm processes the map as a weighted graph, where nodes

represent locations and edges represent possible paths with associated costs (distances).

o Output: A series of waypoints that form the shortest path from the start to the destination.

• Implementation: The algorithm is implemented in Python and visualized using Rviz in ROS. The

paths generated are sent to the robots as navigation goals (Marder-Eppstein, n.d.).

Global Path Planning: A* Algorithm

• Function: Initially planned, the A* algorithm was considered for global path planning due to its

efficiency and heuristic approach, which accelerates the search process by estimating the cost to

the goal (Red Blob Games, n.d.).

• Process:

o Input: The static map of the warehouse, the robot's current position, and the target

position.

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

o Algorithm: The A* algorithm uses a heuristic to guide the search for the shortest path,

combining the actual cost to reach a node and an estimated cost to the goal.

o Output: A set of waypoints representing the optimal path.

• Implementation: Although A* was initially considered, Dijkstra was ultimately chosen for the

final implementation due to specific project requirements (Marder-Eppstein, n.d.).

Local Path Planning: Dynamic Window Approach (DWA)

• Function: The local path planning component employs the Dynamic Window Approach (DWA)

to handle real-time obstacle avoidance and path adjustments (Julian98, 2020).

• Process:

o Input: Sensor data (e.g., from LIDAR or cameras), current robot velocity, and the

waypoints from the global path planner.

o Algorithm: DWA calculates the best velocity commands to ensure smooth and collision-

free movement by considering the robot's dynamics and nearby obstacles.

o Output: Velocity commands that the robot can execute to follow the path while avoiding

obstacles.

• Implementation: DWA is implemented in Python and integrated with the ROS navigation stack

to control the robot's movements (Marder-Eppstein, n.d.).

Local Path Planning: Artificial Potential Field (APF)

• Function: Initially planned, the Artificial Potential Field (APF) method was considered for local

path planning due to its simplicity in modeling attractive and repulsive forces for navigation

(Sheng et al., 2010; Gu et al., 2019; Zhang et al., 2021). Please watch “Original_APF.mp4” and

“Improved_APF.mp4”

• Process:

o Input: Current robot position, target position, and locations of obstacles.

o Algorithm: The APF generates attractive forces towards the target and repulsive forces

away from obstacles. In the improved version, the repulsive force function also considers

the distance from the robot to the target, addressing the unreachable problem by modifying

the repulsive force to be influenced by this distance (Sheng et al., 2010; Gu et al., 2019;

Zhang et al., 2021).

o Output: Path adjustments based on the combined potential field.

• Implementation: Though APF was explored, DWA was chosen for its more robust handling of

dynamic environments and robot dynamics. The improved APF showed better handling of local

minima and unreachable targets by incorporating the distance to the target in the repulsive force

calculation (Du & Nan, 2016; Fan et al., 2020).

• Improved APF:

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

o The improved APF modifies the repulsive force function to also consider the distance from

the robot to the target, thereby addressing the problem of local minima and making

previously unreachable targets accessible. This method ensures a more efficient path

planning by balancing the attractive and repulsive forces more effectively (Du & Nan,

2016; Fan et al., 2020).

𝐹rep⃗⃗ ⃗⃗ ⃗⃗ = {
∑(Frep1,i

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + Frep2,i
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)

i

0

𝑖𝑓 𝑑𝑖 ≤ 𝑟𝑟𝑒𝑝
𝑖𝑓 𝑑𝑖 > 𝑟𝑟𝑒𝑝

where:

𝐹rep1,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑘rep ⋅ (

1

𝑑𝑖
−

1

𝑟rep
) ⋅

1

𝑑𝑖
2 ⋅ |𝑑goal

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |2 ⋅ 𝑑obs,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝐹rep2,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑘rep ⋅ (

1

𝑑𝑖
−

1

𝑟rep
)

2

⋅ |𝑑goal
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | ⋅ 𝑑goal

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

Figure 3 Original APF

Figure 4 Improved APF

Soft Skills and Team Collaboration
Throughout the project, effective communication, reflection, peer collaboration, and professional conduct

played vital roles in our success.

Good Communication with Clients
I actively communicated with my tutor and team members to ensure the project's smooth progress. Every

week, I attended classes and lab sessions, discussing project details with the team. For instance

⚫ With Fuzhen: We discussed system integration, ROS system details (RViz, Gazebo), and the use of

TurtleBot3, including its connection and the integration of SLAM and path planning. We provided

technical support to each other, enhancing our communication skills and teamwork.

⚫ With Ken: We discussed the overall system flowchart, ROS system selection, and the interface

between path planning and task allocation.

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

⚫ With Quang: We focused on each project's stage, the challenges encountered, our proposed

solutions, project expectations, and ways to improve communication and collaboration.

Challenges and Solutions
Throughout the project, I encountered numerous challenges that required overcoming fears and self-

directed learning. These challenges included:

⚫ Installing and using the ROS system.

⚫ Using Python programming language.

⚫ Implementing A*, APF, Dijkstra, and DWA algorithms.

⚫ Utilizing and linking TurtleBot3.

⚫ Using and editing Gazebo and RViz files, including launch files.

⚫ Managing multiple namespaces.

⚫ Ensuring a closed-loop TF tree.

⚫ Linking single and multiple TurtleBot3 units.

⚫ Effective team communication.

⚫ Structuring the overall system.

⚫ Designing the subsystem framework.

⚫ Overcoming fear and frustration, staying motivated under pressure.

⚫ Efficient self-learning.

⚫ Effective English communication.

⚫ Registering move_base plugins.

⚫ Writing and subscribing to topics.

I extensively researched online resources and videos, gradually solving these technical issues through

self-learning. When facing prolonged difficulties or negative emotions, I actively communicated with

Quang and Fuzhen, exchanging opinions and solving problems. We also encouraged each other,

progressively overcoming all challenges.

Reflections
During Design Review 3, I reflected on several key points:

⚫ Reliability of preliminary research.

⚫ Reliability of the overall framework and project goals.

⚫ Reliability of subsystems.

⚫ Allowing sufficient buffer time.

⚫ Understanding the implementation process before starting the project.

⚫ Having backup plans.

⚫ Necessity of subsystem and integration system testing.

From the project, I learned the following key lessons and improvement measures:

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

⚫ Ensure detailed research on the subsystem process during preliminary research, linking each stage

until completion.

⚫ Confirm the project's framework reliability and set achievable goals through discussions and

research.

⚫ Allocate one to two weeks as buffer time during project planning.

⚫ Prepare alternative solutions early, not relying on a single plan.

⚫ Capture critical stages during subsystem and integration system testing, avoiding redundancy and

omissions.

Peer Assessments
Peer feedback highlighted my positive impact on team dynamics. I actively communicated, offering

advice and comfort during setbacks, helping the team reorganize and regain focus.

⚫ Providing Constructive Feedback: I offered thoughtful and constructive feedback during meetings,

helping team members refine their ideas and approaches.

⚫ Encouraging Team Morale: During setbacks, I provided comfort and encouragement, which helped

maintain a positive and productive atmosphere.

⚫ Facilitating Problem-Solving: By actively listening and offering solutions, I helped the team

navigate through difficult issues and stay on track. This included debugging code issues together and

recommending relevant books and videos for better understanding of subsystems.

⚫ Promoting Inclusivity: I ensured everyone had a voice in discussions, fostering a collaborative and

inclusive team environment.

Professional Conduct in Labs and Studios
In the lab, I demonstrated professional behavior by:

⚫ Handling Equipment Carefully: I handled TurtleBot3 and other equipment with care, ensuring they

were returned promptly after use and stored properly.

⚫ Maintaining Cleanliness and Order: I avoided shouting, eating, or causing disruptions in the lab,

maintaining a professional and respectful environment.

⚫ Respecting Lab Protocols: I adhered to all lab protocols, including proper usage and storage of

power supplies and other sensitive equipment.

⚫ Collaborative Etiquette: I respected the workspace of my peers, ensuring a cooperative and

harmonious working environment.

⚫ Safety Awareness: I followed all safety guidelines and encouraged my team to do the same,

prioritizing the well-being of everyone in the lab.

These efforts in maintaining professionalism and effective team collaboration significantly contributed to

the project's success, ensuring efficient problem-solving, effective communication, and a positive

working environment throughout the project lifecycle.

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

Project and Time Management
⚫ Created detailed project plans and timelines, ensuring tasks were completed on schedule.

⚫ Regularly reviewed and adjusted plans to accommodate unexpected challenges.

⚫ Prioritized tasks effectively, focusing on critical milestones.

⚫ Maintained clear and organized documentation for all project activities.

These soft skills and team collaboration efforts significantly contributed to the project's success, ensuring

efficient problem-solving, effective communication, and professional conduct throughout the project

lifecycle.

Conclusion
The multi-robot path planning project successfully achieved its objectives of designing and implementing

a robust system capable of efficient and collision-free navigation in a dynamic warehouse environment.

Through the integration of advanced path planning algorithms and effective coordination mechanisms,

the system demonstrated its ability to handle complex tasks involving multiple robots.

Key findings and outcomes
• Effective Global Path Planning:

◼ The Dijkstra algorithm was effectively utilized for global path planning, ensuring that the

shortest and most efficient paths were calculated for robots to navigate from their starting points

to their destinations. This algorithm's accuracy and reliability were confirmed through extensive

testing and real-world simulations.

• Dynamic Local Path Planning:

◼ The Dynamic Window Approach (DWA) provided robust real-time obstacle avoidance and path

adjustment capabilities. The integration of DWA with the ROS navigation stack enabled the

robots to navigate safely through dynamic environments, avoiding both static and moving

obstacles.

• Initial Considerations and Adaptations:

◼ The project initially explored the use of the A* algorithm for global path planning and the

Artificial Potential Field (APF) method for local path planning. Although these methods were

not used in the final implementation, the insights gained from their exploration contributed to

the project's overall success.

• Seamless Coordination and Communication:

◼ The task assignment module efficiently distributed tasks among the robots, while the SLAM

module provided real-time map updates and localization. The inter-robot communication

mechanisms ensured that robots could share positional and path information, preventing

collisions and optimizing overall system efficiency.

• Comprehensive Testing and Validation:

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

◼ Extensive testing validated the system's ability to generate and follow paths, avoid dynamic

obstacles, and coordinate multiple robots. The successful execution of these tests demonstrated

the system's reliability and robustness in handling real-world scenarios.

Suggestions for future work
• Enhanced Algorithm Integration:

◼ Extensive testing validated the system's ability to generate and follow paths, avoid dynamic

obstacles, and coordinate multiple robots. The successful execution of these tests demonstrated

the system's reliability and robustness in handling real-world scenarios.

• Advanced Obstacle Avoidance:

◼ Investigating and implementing more sophisticated local path planning methods, such as

machine learning-based approaches, could enhance the system's ability to handle highly

dynamic and unpredictable environments.

• Scalability Improvements:

◼ Enhancing the system's scalability to manage a larger fleet of robots would be beneficial for

larger warehouse operations. This could involve optimizing communication protocols and task

assignment strategies.

• Real-World Deployment:

◼ Conducting real-world deployment and testing in an actual warehouse setting would provide

valuable insights and help refine the system to meet practical operational challenges.

The multi-robot path planning system developed in this project has demonstrated its capability to provide

efficient, safe, and reliable navigation solutions in a warehouse environment. The successful integration

of Dijkstra and DWA algorithms, coupled with effective coordination and communication mechanisms,

has ensured the system's robustness and practicality. The lessons learned and the outcomes achieved lay a

strong foundation for further advancements and real-world applications in multi-robot systems.

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

References
Binder, B., Bader, M., & Beck, F. (n.d.). tuw_multi_robot. ROS Wiki. Retrieved from

https://wiki.ros.org/tuw_multi_robot

Chen, J., Qin, X., Li, X., Zhou, Y., & Bao, B. (2020). Multi-robot collaborative obstacle avoidance based

on artificial potential field method. Computer Science, 47(11), 522-533.

https://doi.org/10.11896/jsjkx.190900026

Du, Y., & Nan, Y. (2016). Research of Robot Path Planning Based on Improved Artificial Potential

Field. . https://doi.org/10.2991/AMEII-16.2016.195.

Fan, X., Guo, Y., Liu, H., Wei, B., & Lyu, W. (2020). Improved Artificial Potential Field Method

Applied for AUV Path Planning. Mathematical Problems in Engineering.

https://doi.org/10.1155/2020/6523158 .

Gu, X., Han, M., Zhang, W., Xue, G., Zhang, G., & Han, Y. (2019). Intelligent Vehicle Path Planning

Based on Improved Artificial Potential Field Algorithm. 2019 International Conference on High

Performance Big Data and Intelligent Systems (HPBD&IS), 104-109.

https://doi.org/10.1109/HPBDIS.2019.8735451.

Julian98. (2020, July 26). Move_base namespace issue with multi-robot simulation. ROS Answers: Open

Source Q&A Forum. Retrieved from https://answers.ros.org/question/362623/move_base-

namespace-issue-with-multi-robot-simulation/

Lin, S., Liu, A., Wang, J., & Kong, X. (2022). A review of path-planning approaches for multiple mobile

robots. Machines, 10(9), 773. https://doi.org/10.3390/machines10090773

Luo, Q., Wang, H. B., Cui, X. J., & Xu, H. (2018). Research on autonomous navigation system of

warehousing mobile robot based on improved artificial potential field method in dynamic

environment. Appl Res Comput.

Madridano, Á., Al-Kaff, A., Martín, D., & De La Escalera, A. (2021). Trajectory planning for multi-robot

systems: Methods and applications. Expert Systems with Applications, 173, 114660.

https://doi.org/10.1016/j.eswa.2021.114660

Marder-Eppstein, E. (n.d.). move_base. ROS Wiki. Retrieved from https://wiki.ros.org/move_base

Marder-Eppstein, E. (n.d.). nav_core. ROS Wiki. Retrieved from https://wiki.ros.org/nav_core

Qixin, C., Yanwen, H., & Jingliang, Z. (2006). An evolutionary artificial potential field algorithm for

dynamic path planning of mobile robots. In Proceedings of the 2006 IEEE/RSJ International

Conference on Intelligent Robots and Systems (pp. 3331-3336).

https://doi.org/10.1109/IROS.2006.282551

Red Blob Games. (n.d.). Pathfinding and search algorithms. Retrieved from

https://www.redblobgames.com/

https://wiki.ros.org/tuw_multi_robot
https://doi.org/10.11896/jsjkx.190900026
https://doi.org/10.2991/AMEII-16.2016.195
https://doi.org/10.1155/2020/6523158
https://doi.org/10.1109/HPBDIS.2019.8735451
https://answers.ros.org/question/362623/move_base-namespace-issue-with-multi-robot-simulation/
https://answers.ros.org/question/362623/move_base-namespace-issue-with-multi-robot-simulation/
https://wiki.ros.org/move_base
https://wiki.ros.org/nav_core
https://doi.org/10.1109/IROS.2006.282551
https://www.redblobgames.com/

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

Robotics Stack Exchange. (n.d.). Navigation - move_base with multiple robots running gmapping SLAM

on TurtleBot3. Retrieved from https://robotics.stackexchange.com/questions/11634/navigation-

move-base-with-multiple-robots-running-gmapping-slam-on-turtlebot3

rrt_exploration. (n.d.). ROS Wiki. Retrieved from https://wiki.ros.org/rrt_exploration

Sheng, J., He, G., Guo, W., & Li, J. (2010). An Improved Artificial Potential Field Algorithm for Virtual

Human Path Planning. , 592-601. https://doi.org/10.1007/978-3-642-14533-9_60.

Yang, L., Li, P., Qian, S., Quan, H., Miao, J., Liu, M., ... & Memetimin, E. (2023). Path planning

technique for mobile robots: A review. Machines, 11(10), 980.

Zhao, J., & Zhu, Y. (2011). Mobile robot path planning based on improved artificial potential field

method. Journal of Harbin Institute of Technology, 81-88. Retrieved from

https://www.researchgate.net/publication/289893702_Mobile_robot_path_planning_based_on_impr

oved_artificial_potential_field_method

Zhang, H., Li, M., & Wu, Z. (2021). Path Planning based on Improved Artificial Potential Field

Method. 2021 33rd Chinese Control and Decision Conference (CCDC), 4922-4925.

https://doi.org/10.1109/CCDC52312.2021.9602174.

https://robotics.stackexchange.com/questions/11634/navigation-move-base-with-multiple-robots-running-gmapping-slam-on-turtlebot3
https://robotics.stackexchange.com/questions/11634/navigation-move-base-with-multiple-robots-running-gmapping-slam-on-turtlebot3
https://wiki.ros.org/rrt_exploration
https://doi.org/10.1007/978-3-642-14533-9_60
https://www.researchgate.net/publication/289893702_Mobile_robot_path_planning_based_on_improved_artificial_potential_field_method
https://www.researchgate.net/publication/289893702_Mobile_robot_path_planning_based_on_improved_artificial_potential_field_method
https://doi.org/10.1109/CCDC52312.2021.9602174

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

Appendix
1. https://github.com/caesar1457/Robotics-Studio-2.git

• Description: This repository contains all the code related to the Robotics Studio 2 project. It

includes the source code, configuration files, and documentation for setting up and running

the multi-robot path planning system. The repository is structured to provide a clear

organization of the project's components, making it easy to navigate and understand the

implementation details.

• Video Link: https://github.com/caesar1457/Robotics-Studio-2.git

2. Trailer.mp4

• Description: This video showcases the key achievements of the Robotics Studio 2 project,

divided into four sections:

◼ A Visualized Search*: Demonstrates the A* algorithm in path planning, showing the

optimal pathfinding process.

◼ Multi-Robot Dynamic Obstacle Avoidance: Highlights real-time dynamic obstacle

avoidance by multiple robots.

◼ Multi-Goal Navigation Allocation: Displays efficient target allocation and navigation

for multiple robots to various goals.

◼ Multi-Robot Connectivity and Path Planning: Showcases coordinated path planning

and communication between multiple robots.

• Video Link: Trailer.mp4

3. Astar.mp4

• Description: This video demonstrates the process and results of path planning using the A*

algorithm. The robot navigates the simulated environment following paths generated by the

A* algorithm, verifying the algorithm's effectiveness and efficiency.

• Video Link: Astar.mp4

4. Control_Pathplanning.mp4

• Description: This video showcases the integration test of the path planning and control

systems. The robot navigates according to the planned paths, demonstrating the overall

coordination and control effectiveness of the system.

• Video Link: Control_Pathplanning.mp4

5. multi_navigation.mp4

• Description: This video displays the navigation process of multiple robots within the same

environment. It verifies the coordination and path planning capabilities of the multi-robot

system, ensuring that each robot can effectively avoid obstacles and complete their respective

tasks.

• Video Link: multi_navigation.mp4

6. multi_robot_navi.mp4

• Description: This video records the coordination of multiple robots executing navigation

tasks in a complex environment. It highlights the communication and collaboration between

robots to avoid collisions and optimize overall path efficiency.

• Video Link: multi_robot_navi.mp4

7. SLAM_mapping.mp4

• Description: This video demonstrates the process of the SLAM system generating a map of

the environment and how the path planning system utilizes these maps for path planning. It

verifies the integration of the SLAM and path planning systems.

• Video Link: SLAM mapping.mp4

8. TurtleBot_Control.mp4

• Description: This video shows the control test of the TurtleBot in a test environment. The

TurtleBot receives and executes movement commands, demonstrating its movement

capabilities and the effectiveness of the control algorithm.

• Video Link: TurtleBot Control.mp4

https://github.com/caesar1457/Robotics-Studio-2.git
https://github.com/caesar1457/Robotics-Studio-2.git
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/EfjqT9gnK1lHrktWnIVBNssBUml5UzuWUadHMvyUHucKEg?e=4vgHLA
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/Eb-qGu6Lnj5LmejNwQ9tzp0BfYFO8csybDPyjEurtp8-zQ?e=vzEn7I
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/Ef-hrRdIUK9Auz3S_heZDaoBQYyHRfh6kX2vuhrN__X3hQ?e=vtmlYO
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/EUm2fWfmo7lLipmW-mdEVO4BLYnJhTcDIen0MIPwqjc5qg?e=inziFJ
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/ESZvYwzMydlEuOY2mMbyXUYBS29dg96ERLIK7EOC12EF_g?e=eX26ZT
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/Ef_BfSeOPWpLk5OQ9fwC0DgBLIe1l_nmCP0Q_qK3jWBHhA?e=EVR8MX
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/EXOXa4nUVs9Cpt17Dm6yoKoBt45BdW5HYsTooCHdKJJC0g?e=rb8KpM

UTS Faculty of Engineering and Information Technology Assignment Cover Sheet 2016

9. Multi-robot_connection_test.mov

• Description: This video demonstrates the connection test of multiple robots in the system. It

shows how the robots are interconnected and communicate with each other to coordinate their

actions.

• Video Link: Multi-robot_connection.MOV

10. Multi-robot_dynamic_test.mov

• Description: This video shows the dynamic obstacle avoidance test of multiple robots in a

simulated environment. It highlights the robots' ability to dynamically navigate and avoid

obstacles in real-time.

• Video Link: Multi-robot_dynamic_obstacl_avoidance.MOV

11. Multi-robot_testing.mov

• Description: This video presents the overall testing of multiple robots, including movement

coordination and task execution. It illustrates the successful implementation and testing of the

multi-robot system.

• Video Link: Multi-robot_test.MOV

12. Original_APF.mp4

• Description: This video demonstrates the implementation of the original Artificial Potential

Field (APF) method for robot navigation. The robot navigates towards the target while

avoiding obstacles using the standard APF algorithm.

• Video Link: Original_APF.mp4

13. Improved_APF.mp4

• Description: This video showcases the improved APF method, which enhances the repulsive

force function by considering the distance from the robot to the target point. This

modification aims to resolve the issue of unreachable targets. The robot demonstrates more

effective navigation and obstacle avoidance compared to the original APF method.

• Video Link: Improved_APF.mp4

14. multi_targets_navigation.mp4

• Description: This video demonstrates the simultaneous navigation of multiple robots to

multiple target points within a simulated environment. Each robot is assigned a set of unique

target points and uses path planning algorithms to navigate to these points while avoiding

obstacles and collisions with other robots. The video showcases the coordination and

efficiency of multi-robot systems in complex navigation tasks.

• Video Link: multi_targets_navigation.mp4

15. navigation_task_list.mp4

• Description: This video illustrates the execution of a task list by a robot navigating within a

simulated environment. The robot is tasked with visiting a sequence of designated points,

showcasing its ability to prioritize tasks and efficiently plan its path. The video highlights the

robot's capabilities in dynamic task management and obstacle avoidance using advanced path

planning techniques.

• Video Link: navigation_task_list.mp4

https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/ETQMMAT-ERdMizMo_hRcAaoBiOntD4-N4eKSreYrgLOnsA?e=Qq4GTH
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/EYJRayKqq-dLvRGno9F3cD0B8mGwJEz_vEnCe6NBUXVIWA?e=yL5jP7
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/ERMx30RwIp1Cq7CSw8SB5rAB0-K_zif71Gl2kNzSCuc0FQ?e=7bQK8K
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/EXitVVEf2jNEpn42Q7pJ6IEBHMACPfSTHMoCh1eivCUHRw?e=z53YUz
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/EeH9AERZjXdAug-azmdTm8oBnQETqfp_Ln-YsJHt70sQ5w?e=n1zaL9
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/EYKVcU3MjItPseHEk1JaRZgBTMjLz9-lE08uwhVPzQI5Ig?e=dyWg2z
https://studentutsedu-my.sharepoint.com/:v:/g/personal/zhiye_zhao-1_student_uts_edu_au/EaUE3M6rqEtIjTZC_ZOsK9UBCrH5eyZVjgq5EZtWPbChcQ?e=suqTMW

